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Abstract
Conventional battery cathodes are limited by the redox capacity of the transitionmetal components.
For example, the delithiation of LiCoO2 involves the formal oxidation fromCo(III) to Co(IV).
Enhanced capacities can be achieved if the anion also contributes to reversible oxidation. The origins
of redox activity in crystals are difficult to quantify from experimentalmeasurements orfirst-
principlesmaterialsmodelling.We present practical procedures to describe the electrostatic
(Madelung potential) and electronic (integrated density of states) contributions, which are applied to
the LiMO2 and Li2MO3 (M=Ti, V, Cr,Mn, Fe, Co,Ni, Cu, Zr,Nb,Mo, Ru, Rh, Pd, Ag,Hf, Ta,W,
Re,Os, Ir, Pt, Au)model systems.Wediscuss how such descriptors could be integrated in amaterials
designworkflow.

The large difference in electronegativity betweenmetals and oxygenmean thatmetal oxides are heteropolar
compounds [1, 2]. Oxidation ofmetal oxides occur between two extremes. In the first, common for transition
metal oxides, an increase in the formal oxidation state of themetal occurs  +M Mn n 1( ). In the second, the
oxide itself is oxidised - -O O2 1( ), resulting in a so-called oxygen hole [3].

Due to the electron configuration of the oxide ion going from closed-shell 2p6 to open-shell 2p5, evidence
for oxygen hole formation has commonly being reported from electron paramagnetic resonance (EPR)
spectroscopy. As early as 1955,O’Brien andBleaney used EPR to establish that the colour centres in smokey
quartz (SiO2) are due to oxygen redox induced byAl impurities [4]. EPR signals are presented as clear evidence
for the hopping of holes between oxygen sites in SiO2 in the later work of Schnadt and Schneider [5].

The dominant oxidationmechanism in conventional intercalation battery cathodes is cationic, while
recently there has been a strong focus on the development of so-called anion redox cathodes. In this context,
anion redox refers to oxidation processes inwhichM andO are both active [6], which could enhance overall
battery capacity. Detailed reviews on this topic can be found at [7] and [8].

The driving forces dictating towhat extentM andO can be oxidised in the same compound are challenging
to probe by experiment and simulation. Recently, there have been substantial effortsmade to understand how
anion redoxmight be harnessed in a small set of emerging cathodematerials [9–16].

Meanwhile, developments in predictive, high-throughput design in other areas of energymaterials research
such as photovoltaics [17–19], photocatalysis [20, 21] and thermoelectrics [22–24] have enabled broader
searches of the chemical landscape and have in some cases led to the discovery of promising candidate
compounds. Such virtual screening studies rely on the use of simple descriptors to predict properties of
candidatematerials at low computational cost.
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Herewe present practical procedures for probing the contributions to redox phenomena from electrostatic
and electronic perspectives. Ourworkflow relies on open-sourcematerials informatics tools and the output of
routinefirst-principles calculations.We provide worked examples to demonstrate our approach, which is
applied to LiMO2 and Li2MO3model systems (M=Ti, V, Cr,Mn, Fe, Co,Ni, Cu, Zr, Nb,Mo, Ru, Rh, Pd, Ag,
Hf, Ta,W, Re, Os, Ir, Pt, Au), that have been structurally optimized using density functional theory (DFT).

1. Electrostatic descriptors

Oxide (O2−) ions are unstable in vacuum, but become stable in a crystal due to the confining electrostatic
potential [25]. Thismakes the positioning of theO 2p valence band in ametal oxide highly sensitive to the crystal
environment [26].

The electrostatic (Madelung) energy of a crystal under the ionic point-charge approximation can be
expressed as the sumof all pairwise interactions, = åE i j

z z

r,
i j

ij
, where zi and zj are the formal charges of the ith and

jth ions and rij is the interionic distance. Accordingly, the potential experienced at site i (the site potential) is
given as = åVi j

z

r

j

ij
. A larger potential is produced formore highly chargedmetals at shorter distances.

A smaller averageMadelung site potentialmight be expected from a higher Li+:Mn+ ratio, owing to the
overall decrease in positive charge. For stoichiometric systems, however, the value of n increases with this ratio in
order to satisfy the valence of all species, and this is the dominant effect as seen in Figure 1when comparing
LiMO2 (M

3+) to Li2MO3 (M
4+) for a given transitionmetal.

There is a range of>3.5 V for the averageMadelung potential of oxygen evenwithin a given structure
prototype, (LiAuO2 vs LiCoO2, Figure 1(a)). Given that the formal charge of the transitionmetals remains
constant within a series, the variation inVi is solely to differences in interionic distances in the relaxed crystal
structures. It should be noted that in addition to the compounds containing group 10metals (Ni, Pd, Pt), which
relax to a different structure typewith square planar geometry, Nb, Ta andOs also distort the parent structure
shown in Figure 1.

If Li/M site disorder is introduced—based on 128 atom2×2×2 supercells of LiMO2—the impact on the
local site potentials is large. This effect is apparent in Figure 2, which shows the oxide potential range in LiMO2

for thefirstfive transitionmetals that we consider. The site potential decreases rapidly as the Li+:M3+ ratio
increases in a similar way for allfive compounds. This trend recovers the analysis of Seo et al, which showed that
a Li-rich coordination is required for the extraction of oxygen electrons in Li-ion cathodes [11].

Figure 1. (a)AverageMadelung potential at oxygen sites in LiMO2 and Li2MO3when theM transitionmetal is varied. Crystal
structures of (b) LiMO2 and (c) Li2MO3prototypes are shownwith Li,M andOdepicted as green, blue, and red spheres, respectively.
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Finally, we can extend this analysis to estimatewhether oxidationwill proceed viaM orO. In the context of
oxide superconductors, Torrance andMetzger defined hole localisation energy as

D = - + -E A I e V V 1n
M

M M
M

h 2
O O( ) ( ) ( )

which separates into (i) atomic contributions A2
O andIn

M , the second electron affinity of oxygen and the
nth ionization energy of the - +M n 1( ) cation, respectively, and (ii) structural contributions from theMadelung
potentialsVM

O andVM
M [27]. A smaller value ofDEh indicatesmore favourable hole formation on oxygen.

Figure 3 shows how this descriptor largely follows the same trend as the negative of In
M , but ismodulated by the

structural contributions via theMadelung potential. Note that this trend ismost obviously observed for the first
row transitionmetals (Figure 3) for which a complete set of reliable ionisation energies is available.

In summary, theMadelung site potential is a physicallymeaningfulmetric that is simple to calculate.While
there are few theoretical or experimental results withwhich the observationsmade on ourmodel systems can be
directly compared, we have shown how theO site potential can be highly sensitive to the surroundings in typical
Li-ion cathode compounds, that the observed trends are consistent with recent theoretical work in the field of
anion redox [11], and how this can be extended to estimate hole localisation energy.

2. Electronic descriptors

Aquantitative description of cathode redox processes require explicit consideration of delithiation. In the spirit
offinding computationally cheap descriptors, however, we can examine the lithiatedmaterial [6, 7].

The electronic density of states (DOS) represents the number of states available as a function of energy, and is
a standard output of all electronic structure codes.We can project this onto atomic sites to obtain a species and
orbital decomposedDOS. By integrating the oxidationwindow in the upper valence band, it is possible to extract

Figure 2.AverageMadelung potential at oxygen sites (VM
O ) in LiMO2 for different Li

+:M3+nearest neighbour ratios.

Figure 3.Hole localization energy (DEh) and the negative of the 4th ionization potential ofM (-In
M ) for LiMO2whereM is a first-row

transitionmetal (Ti–Cu).
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the ratio ofmetal d-orbital (M d) to oxygen p-orbital (Op) contributions. Herewe choose an oxidationwindow
of 1 eV below the top of the valence band, but this could be easily adapted tomore accurate distributions.

Figure 4 shows the extreme cases ofMgOandCu2O, inwhichCu
+ has a d10 configuration. DOS analysis

(Notebook 2) shows that the upper valence band is comprised of 100%Op and 0%Mg s forMgO, and 87%Cud
and 13%Op forCu2O. These fractions are expressed in terms of the orbitals of interest (e.g. Cu d+O
p=100% forCu2O) to avoid influence on the stoichiometry, whichwill change upon cycling.

TheDOS fractions ofM-d andO-p are compared for LiRuO2, Li2RuO3, LiWO2 and Li2WO3 in Figure 5.
TheO-p contribution to the upper valence band is higher for Li2MO3 compared to LiMO2. It should also be
noted that the ground statemagnetic ordering of Li2RuO3 is ferromagnetic (Figure 5), which is necessary to
obtain a reliable electronic structure. An efficient way to automate the search formagnetic ground states is
described byHorton et alin [29].

This analysis allows for an immediate insight intowhich states are available in the upper valence band to
contribute to redox processes. Our approach exemplifies how tracking individual orbital contributions to the
DOS, which has constituted important evidence for the presence of absence of anionic redox in previous studies
[12, 30], can be quantified.

3.Workflow integration

The electrostatic descriptors are low-cost and only require structural information. Calculation ofMadelung site
potentials can be carried out in a few seconds on a desktop computer using the Ewaldmethod, which is
implemented in Pymatgen [31] (seeNotebook 1).WhileMadelung energies have previously been used as
descriptors of battery voltage [32], individual site potentials have been applied to understanding band

Figure 4.Orbital contributions to electronic density of states (DOS) inMgO andCu2O. The upper valence band (highlighted blue) in
MgO is dominated byOp-states (100%)while in Cu2O it is dominated byCu d-states (83%). Plots createdwith Sumo command-line
tools [28].

Figure 5.Orbital contributions to the upper valence band (highlighted blue) of the electronic density of states (DOS) in LiRuO2 (20%
Op, 80%Rud), Li2RuO3 (35%Op, 65%Rud), LiWO2 (18%Op, 82%Wd) and Li2WO3 (25%Op, 75%Wd). Plots createdwith
Sumo command-line tools [28].
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alignments [33, 34]. The approaches could be improved by incorporating dielectric polarisation of the host
crystal.

The electronic descriptors require only theDOS, and this is produced as standard output forDFT
calculations. The post-processing is performed in less than a second on a desktop computer; a negligible amount
of time compared to the original DFT calculations (seeNotebook 2).

Overall, both descriptors require common representations of crystalline compounds (i.e. crystal structure
and electronicDOS) and are therefore suitable for large-scale studies of lithiation, sodiation inNa-ion battery
cathodes, and other chemistries. They could both be integrated, for example, intoMonteCarlo techniques as
part ofmulti-scale simulations (Figure 6).

4. Technical details

All the code and data necessary to reproduce the results discussed here can be found the accompanying data
repository at https://doi.org/10.5281/zenodo.3754712.We rely primarily on the Pymatgen Python library
[31], which is used to process crystal structures optimized byDFT (Notebook 1) and electronic structures solved
by hybridDFT (Notebook 2).

All first-principles calculationwere automated using the Python packages Atomate [36] and Fireworks [37].
We usedKohn–ShamDFTwith a projector-augmented planewave basis [38] as implemented in theVienna
Ab-initio Simulation Package (VASP) [39, 40].We use the PBEsol exchange-correlation functional [41] and a

Figure 6.Workflow for a generalisedMonte Carlo simulationwhere theMetropolis algorithm [35] is used to build up an acceptable
set of system configurations. A step to calculate both theMadelung potential and density of states descriptors could be inserted (orange
box) at negligible additional computational cost.
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k-point grid is generated for each calculationwith a density of 120Å3 in the reciprocal lattice. The kinetic-energy
cut-off is set at 600 eV and the forces on each atomminimised to below 0.005 eVÅ−1.

Semi-local exchange-correlation treatments such as the PBEsol functional provide an accurate description
of crystal structures but tend to underestimate the electronic bandgaps of semiconductors. To overcome this
issue,more accurate calculations are performed using a hybrid non-local functionalHSE06 [42], which includes
25% screenedHartree–Fock exact exchange, which are used for the electronic structure analysis.Γ-centred
homogeneous k-point grids are usedwith a density of 120Å3 in the reciprocal lattice and the kinetic energy
cutoff is set at 550 eV.
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