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ABSTRACT
The relative permittivity of a crystal is a fundamental property that links microscopic chemical bonding to macroscopic electromagnetic
response. Multiple models, including analytical, numerical, and statistical descriptions, have been made to understand and predict dielectric
behavior. Analytical models are often limited to a particular type of compound, whereas machine learning (ML) models often lack inter-
pretability. Here, we combine supervised ML, density functional perturbation theory, and analysis based on game theory to predict and
explain the physical trends in optical dielectric constants of crystals. Two ML models, support vector regression and deep neural networks,
were trained on a dataset of 1364 dielectric constants. Analysis of Shapley additive explanations of the ML models reveals that they recover
correlations described by textbook Clausius–Mossotti and Penn models, which gives confidence in their ability to describe physical behavior,
while providing superior predictive power.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0013136., s

I. INTRODUCTION
The dielectric response function is one of the fundamental

properties of materials, which can give an insight into optical and
electric properties. Specifically, the electronic high-frequency com-
ponent of the dielectric constant has been explored intensively in
early studies and is still of interest among researchers today.1–3

Numerous efforts have been made to model dielectric constants.
Most notably, the Clausius–Mossotti (CM) and Penn models, and
their variants, are widely adopted throughout the literature.2–5

A. Clausius–Mossotti model
The Clausius–Mossotti (CM) equation expresses the dielectric

constant ε as
ε − 1
ε + 2

=∑
i

4παi
3v

. (1)

Here, αi is the polarizability of atomic species i and v is the volume
of the unit cell. In the case of molecular crystals, αi can be assigned

to a constituent molecule,6–8 and in ionic solids, it is assigned to an
ion. The inherently many-body nature of the dielectric constant is
reduced to this simple relation through the employment of two large
assumptions.

First, an external electric field is screened by a dielectric
medium before reaching an atom. In the CM model, cubic symmetry
is assumed, and the local field Eloc(r) is expressed as

Eloc(r) = ε + 2
3

Eext(r), (2)

where Eext(r) is the external electric field. This relation, the Lorentz
relation, is frequently used for non-cubic cases and generally holds
when the anisotropy is small.9,10 In the particular case where Eloc(r)
= Eext(r), the relation between the polarizability and the dielectric
constant is called the Drude relation.11
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Second, the atomic polarizability αi is assumed to be a constant
additive quantity. In other words, αi is assumed to be unaffected
by the environment. Due to its simple form, the CM model is still
being used and, in practice, works for many materials,2,12 despite the
underlying assumptions.9,13–15

Numerous efforts have been made to improve the CM
model.16–18 In general, more effort was put into improving atomic
polarizability αi rather than changing the functional form.16–19

While Wilson and Curtis increased the accuracy of the model by
considering the electrostatic environment of an atom,17 Jemmer
et al. fitted parameters to Møller–Plesset calculations.18 Nonetheless,
the range of compounds and structures in which the model is valid
was found to be limited. More recently, Shannon and Fischer fit-
ted atomic polarizabilities to sets of experimental and computational
data.2,3 This was one of the first studies to consider compounds
throughout a wider variety of structures, and their values of atomic
polarizability were more transferable. Although many studies focus
on materials that are well described by a particular model, Shan-
non and Fischer investigated materials that could not be described
by their model. This approach allowed them to identify anomalous
dielectric behavior in materials that are sterically strained or have the
perovskite structure.

B. Penn model
The premise of the Penn model is the electronic band picture.

When the overlap between electrons at different atomic sites is large,
such a model is anticipated to be favorable. Treating the external
electric field as a time-dependent perturbation, Penn derived the
following relation:1

ε ≈ 1 + ( h̵ωp

Eg
)

2

, (3)

where ωp is the plasma frequency and Eg is the width of the
bandgap. The significance lies in the fact that the dielectric constant
is described only by the plasma frequency and the bandgap. Using
the second order perturbation theory, polarizability α for an isolated
atom can be written as α ≈ (h̵ωp/Eg)2, where Eg is the HOMO–
LUMO gap. In this case, the screening of the external field can be
ignored, and the Penn model is equivalent to the CM model.

As with the CM model, there are various assumptions for the
Penn model. The first main assumption is to consider the electrons
as a free electron gas. This allows the form of the equation to be
greatly simplified but is not valid when electrons are localized.20,21

The second assumption is to consider only the bandgap and not the
density of states around the valence and conduction band edges. This
flat band approximation results in a large error when the valence or
conduction band has a large dispersion.5

Various efforts have been made to improve this model. Phillips
added a correction for ionic bonds and showed that dielectric con-
stants in zinc blende and wurtzite were reproduced.20,21 Further-
more, Van Vechten added a scaling factor taking into account that
not all valence electrons contribute to the dielectric response.22,23

These modifications did contribute to increasing the predictive
power; however, a universal model was not achieved.

In addition to CM/Penn based models, many other empir-
ical models such as those of Allen, Gladstone–Dale (GD), and
Anderson–Eggleton have been developed.24–27 All of these models

relate atomic polarizability α to dielectric constant ε. Within these
models, the GD model has been researched intensively;3,28–30 how-
ever, Fowler et al. reported that the GD model overestimates the
atomic polarizabilities and the CM model is theoretically more
rigorous.29

C. Data driven models
Rapid progress in computer technology and first-principles

modeling techniques has enabled the calculation of dielectric con-
stants for a large number of materials.31–33 The modern calculation
of dielectric constants is typically done using density functional per-
turbation theory (DFPT).4,34–38 Despite being a perturbation theory,
DFPT can be calculated with a relatively low cost, and the results
are less dependent on the exchange–correlation functional used,
compared to properties such as bandgaps.4 Therefore, many stud-
ies have involved analysis of datasets of dielectric constants aiming
to understand trends or predict values for new materials. For exam-
ple, Han and co-workers performed high-throughput calculation of
binary and ternary inorganic compounds and compared the relation
between the bandgap and the dielectric constant.4,34 Some studies
employ machine learning (ML) methods where a statistical model is
trained.35,36 For example, Umeda et al. trained different ML models
on a dataset of 3382 compounds.35 They obtained good agreement
with DFPT calculations; however, the reasons for this agreement are
not discussed.

The CM model approaches the problem from a molecular pic-
ture, whereas the Penn model is based on the electronic band picture
of a crystal. As such, the former has difficulty with delocalized elec-
trons, and the latter has difficulty with localized electrons. In both
cases, the improvement of the model was done empirically, and
when the number of parameters became large, systematic expan-
sion of the model became difficult. On the other hand, ML mod-
els can increase model complexity systematically, while they suffer
from poor interpretability. By studying the difference between ML
and analytical models, we can recover new underlying physics and
deepen our understanding of the phenomenological behavior of the
dielectric response.

In this study, we use two types of ML models and investigate
the reasoning behind their predictions. First, a deep neural network
(DNN) and a support vector regression (SVR) model are trained
on the same dataset. Next, their results are compared with DFPT
calculations. Finally, we perform game theoretic analysis [Shapley
additive explanations (SHAP)] to elucidate the characteristics of the
trained ML models and to investigate the reason behind their predic-
tions. We compare the result closely with the CM and Penn models
and show that ML can indeed learn the underlying physical trends
while having superior predictive power. Additionally, the Shapley
analysis allows us to identify reasons for poor model performance in
particular cases, which is important when considering how reliable
the predictions are.

II. METHODOLOGY
A. Machine learning

Supervised ML models were trained on a dataset of 1364
dielectric constants. The dataset was prepared by combining two
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pre-existing datasets37,38 and averaging the data for the overlapping
materials. Materials with a bandgap less than 0.5 eV were removed
because small gap materials require very dense sampling of the Bril-
louin zone, which is difficult to realize in high-throughput calcu-
lations.43 The dielectric constant was calculated by taking a diag-
onal average of the electronic part of the dielectric matrix. Since
this dataset only contained minimum features, it was augmented
and processed using Materials Project,39,40 pymatgen,42 SMACT,41

and scikit-learn.44 The dataset was split into 8:2, the training:test
sets. The same dataset was used when training the two different ML
models.

The first ML model was support vector regression (SVR).
Before training, we analyzed the available features and removed
those unimportant or similar. This step was necessary because hav-
ing too many features increases the dimensions of the manifold
that the model must learn in and thus lowers the performance.45

Specifically, we calculated feature importance using the random for-
est (Fig. S1) and removed low importance features: space group
(one hot encoded), atomic species (one hot encoded), number of
elements, and number of sites inside the unit cell. Next, with the
criterion of r2 > 0.90, we removed the maximum oxidation state
and variation in Madelung energy, which had high correlation with
variation in oxidation state and minimum in Madelung poten-
tial, respectively (Fig. S2). The refined features are presented in
Table I.

Four machine learning models, the random forest, gradient
boost regression, kernel ridge regression, and SVR, were trained
and compared (Fig. S4 and Table S1). The former two models are
based on decision trees, and the latter two models are based on ker-
nel methods. Since the random forest and gradient boost regression
are ensemble methods, we surmise their performance to be better;
however, they were overfitting, and the kernel methods were able
to generalize better. The kernel ridge regression had a slightly lower
performance compared to SVR; therefore, SVR was employed for
this study.

The second ML model was a deep neural network (DNN).
Specifically, we have adopted the DNN architecture MEGNet devel-
oped by Chen et al.46 MEGNet can be trained only by using
the crystal structure of materials. The exact structure of the net-
work is presented in Fig. S3. It is not trivial to uniquely express
a crystalline system in the form of a vector; however, MEGNet

TABLE I. Features used to train the support vector regression model.

Feature Dimensions

Bandgapa 1
Δ Pauling energyb 1
Material densitya 1
Formation energy (per atom)a 1
Oxidation state (minimum, variation)a 2
Madelung energy (minimum, maximum)c 2
Ionic species (one hot encoded)c 85

aObtained from the Materials Project.39,40

bCalculated using SMACT.41

cCalculated using the pymatgen package.42

overcomes this difficultly by representing bonding networks as
graphs and using the set2set algorithm to consistently treat differ-
ent sized graphs.46 Atomic number and bond length are encoded
into the graph representation. The model was trained for 400 epochs,
and the layer weights of the epoch with the smallest Huber loss were
employed.

There are two advantages and a disadvantage of using MEGNet
over SVR. The first advantage is to avoid the so-called “feature engi-
neering.” Feature engineering is a process of feature selection, which
was necessary for SVR. Although this can be a way of inputting
our domain knowledge,31 this relies heavily on experience and intu-
ition and may obstruct the systematic improvement of an ML model.
The second advantage is that it is easy to perform transfer learning.
As larger datasets are available for other materials properties, it is
tempting to use that information in training. Since the upper layers
in DNNs are known to learn general trends, it is possible to import
the layer weights of the upper layers in advance and improve the
accuracy.46 Taking into account the Penn model, and the results of
feature engineering for SVR (Figs. S2 and S1), we performed trans-
fer learning from the MEGNet model that Chen et al. trained on
bandgaps.46 The disadvantage of DNNs is interpretability. Specifi-
cally, because we used graph representation as the input, the relation
between the features and dielectric constant were difficult to extract.

B. Density functional theory calculation
Following the approach of Shannon and Fischer,2,3 we have

investigated materials that had large error in our SVR and DNN
predictions. To do this, we calculated the total of 24 structures
using DFPT. The calculations were performed with the projector-
augmented wave scheme as implemented in VASP.47–49 The structures
were taken from Materials Project and were calculated using the PBE
functional.39,40,50 The reciprocal space was sampled so that the spac-
ing between the k-point was about 2π × 0.03 Å−1. The energy cutoff
was set to at least 600 eV, and the wavefunctions were optimized to
a tolerance of 10−6 eV.

C. Shapley additive explanations
For model interrogation, we perform Shapley additive explana-

tions (SHAP) analysis.51 The Shapley regression value is defined as

ϕi = ∑
S⊆F/{i}

∣S∣!(∣F∣ − ∣S∣ − 1)!
∣F∣! [fS∪{i}(xS∪{i}) − fS(xS)]. (4)

Here, S is a subset of the features (F), i is a particular feature of
interest, f is the ML model, and xS represent the values of the input
features in the set S.51 ϕi describes how much the model output
changes when feature i is added to the model. Therefore, it can be
used to quantify feature importance. As SVR cannot take features of
different sizes, we used the median of the feature instead of removing
them. Furthermore, if we fix data xS and model f, we can show which
features are responsible for the prediction given subset xS. Using
the additivity approximation suggested by Lundberg and Lee,51

we calculated the SHAP values of all the features and data in the
dataset.
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III. RESULT
A. ML prediction

The dielectric constants predicted by SVR are plotted against
the dataset values in Fig. 1(a). In general, materials with dielectric
constants above 10 had larger error. The DNN performed similarly
to SVR, as shown in Fig. 1(b). The main difference was suppression
of error in the high dielectric constant range and a slight increase of
error in the low dielectric constant range in the predictions from the
DNN.

The performance metrics of SVR and DNN are summarized
in Table II. This performance is similar to the performance of ML
models in previous studies.52–54 Ideally, if there is no overfitting
and the ML model is trained sufficiently, metrics for training and
test data should be identical; however, Table II implies tendency
for both models to exhibit overfitting. For SVR, different sets of

FIG. 1. Prediction of (a) support vector machine (SVR) and (b) deep neural net-
work (DNN) compared with dataset values. Mean average error (MAE) of the ML
prediction is shaded gray.

TABLE II. Performance metrics of support vector regression (SVR) and deep neural
network (DNN) for training and test data. Metrics are mean Pearson’s correlation coef-
ficient (r2), average error (MAE), mean squared error (MSE), and root mean square
error (RMSE).

SVR DNN

Metric Training Test Training Test

r2 0.92 0.86 0.95 0.84
MAE 0.24 0.44 0.20 0.55
MSE 0.69 0.99 0.38 1.17
RMSE 0.83 0.99 0.62 1.08

hyperparameters and loss functions were trialed, and the result pre-
sented here represents the best achievable performance (Table S1).
We built a series of SVR models on different sized subsets of the
data (Fig. S6) and find that the difference in the loss function metric
decreased as we increased the dataset size but did not converge. We
therefore attribute overfitting to the small size of our dataset. Com-
pared to SVR, the difference in metric between the test and training
data was larger for the DNN, suggesting that the former model was
able to generalize better and exhibits overfitting to a lesser extent.
For test data, the SVR demonstrated higher performance for all of
the metrics than the DNN (Table II).

The ten materials with largest prediction error are listed in
Tables III and IV. Out of the ten materials, seven of them were com-
mon between the two ML methods. It is worth noting that LiBC,
Ga2Te5, LiAsS2, and In2HgTe4 have error large enough to be identi-
fiable in Fig. 1. We also present the energy above hull (obtained from
Materials Project) to show that these materials are not artifacts from
computational screening and could possibly be stable.39,40

Since the dielectric constant dataset we use for training was
derived from a high-throughput workflow,37,38 the precision is opti-
mized to be convergent for most materials,55 which results in some

TABLE III. List of ten materials with largest error in support vector regression (SVR)
prediction. εSVR, εDataset, and εDFPT (this work) are dielectric constants from SVR
prediction, training dataset, and our density functional perturbation theory (DFPT) cal-
culation, respectively. Δεdataset is the difference between εSVR and εDataset. ΔεDFPT
is the difference between εSVR and εDFPT. ΔEhul l (meV) is the energy above hull per
atom.

εDFPT ΔEhull
Formula εSVR εDataset Δεdataset (this work) ΔεDFPT (meV)

LiBC 3.54 13.53 −9.99 11.96 −8.43 0.00
Ga2Te5 10.48 17.19 −6.71 13.75 −3.27 0.00
LiAsS2 7.05 12.39 −5.34 8.57 −1.53 0.00
In2HgTe4 11.69 16.20 −4.51 13.30 −1.61 0.00
KCaBi 9.22 7.21 2.01 7.51 1.71 0.00
CdCN2 6.55 4.59 1.96 4.45 2.10 0.00
HfNCl 6.88 4.94 1.95 4.68 2.21 0.00
CuBS2 6.59 8.53 −1.94 8.31 −1.71 0.00
CuBSe2 8.27 10.03 −1.76 9.78 −1.51 0.00
Cu2HgI4 6.91 8.53 −1.62 7.63 −0.72 0.00
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TABLE IV. List of ten materials with largest error in deep neural network (DNN)
prediction. εDNN, εDataset, and εDFPT (this work) are dielectric constants from DNN
prediction, training dataset, and our density functional perturbation theory (DFPT) cal-
culation, respectively. Δεdataset is the difference between εDNN and εDataset. ΔεDFPT
is the difference between εDNN and εDFPT. ΔEhul l (meV) is the energy above hull per
atom.

εDFPT ΔEhull
Formula εDNN εDataset Δεdataset (this work) ΔεDFPT (meV)

LiBC 5.87 13.53 −7.66 11.96 −6.09 0.00
Ga2Te5 10.64 17.19 −6.55 13.75 −3.11 0.00
LiAsS2 7.17 12.39 −5.22 8.57 −1.41 0.00
In2HgTe4 12.03 16.20 −4.18 13.30 −1.27 0.00
LiZnN 6.03 10.06 −4.02 9.85 −3.82 0.00
Cs2HfI6 8.17 4.15 4.01 3.81 4.35 0.00
AlAsa 13.54 9.54 4.00 9.59 3.95 6.27
AlAsb 13.26 9.81 3.45 9.72 3.54 0.00
Li3NbS4 6.36 3.13 3.23 3.03 3.33 6.61
MgTe2 7.27 10.43 −3.16 10.42 −3.15 7.17

aWurtzite structure.
bZinc blende structure.

results being poorly converged.43 Therefore, for comparison, we
have performed higher precision calculations using DFPT on these
compounds, and the results are presented in Tables III and IV.

IV. DISCUSSION
A. ML prediction

The larger error found when the large dielectric constant is
greater is not surprising (Fig. 1). In addition to the numerical insta-
bility in DFPT calculations,43 there are fewer materials with large
dielectric constants in the dataset; therefore, the ML models were
not able to fully learn the trends in the large dielectric constant
range.

Comparing SVR and DNN, the performance was similar, as
shown in Fig. 1 and Table II. This is surprising since the features used
for training each model were different. It suggests that both models
are sufficiently capturing physical trends in the training data. If the
model is generalized well, we expect them to be able to detect anoma-
lous data in the DFPT dataset. For eight (seven) materials out of ten
materials, SVR (DNN) actually predicts values closer to our calcula-
tions, which were performed under higher precision. This is clearly
the case for Ga2Te5 and LiAsS2. For example, in the case of Ga2Te5
in Table III, the SVR prediction was 10.48, whereas the dataset value
was 17.19 and our calculation was 13.75.

Since small bandgap materials require fine Brillouin zone sam-
pling,43 the standardized sampling in the high-throughput calcula-
tion setup may be insufficient. To confirm this, we calculated the
dielectric constant of LiAsS2 with different Brillouin zone sampling
densities. Our converged value of dielectric constant was 8.57, while
11.46 was obtained using coarse sampling. 11.46 is closer to the
dataset value of 12.39 (Table III and Table S5). Although this is
not direct evidence, we speculate that the materials which exhib-
ited a large difference between our calculations and the dataset

were especially sensitive to the Brillouin zone sampling and, as
a result, made the reported dielectric constants of these materials
anomalous.

Although we found few cases of under-converged data, we
believe that the overall precision of the dataset was sufficient. Since
the training error serves as an upper bound of the random noise in
the training dataset,56 we can estimate that the error due to insuf-
ficient Brillouin zone sampling is smaller than the mean average
error of 0.44 (SVR-test column in Table II). Therefore, materials
in Tables III and IV have significantly larger numerical error than
the average. This trend is also apparent when compared with the
materials with small prediction error (Tables S3 and S4).

B. SHAP analysis
SHAP analysis applies a game theoretic approach to calculate

the importance of individual input features to a given model predic-
tion. A positive (negative) SHAP value indicates that a given feature
contributes to an increase (decrease) in the prediction with respect
to the mean of the set. Figure 2 shows the calculated SHAP values for
all features and data. The features are ordered by their importance.
Note that the order of importance differs from Fig. S1, which was a
random forest model trained on all features and data, whereas Fig. 2
is SVR built only on training data.

The high contribution of material density can be explained
by both the CM and Penn expressions or explicitly related by the
Gladstone–Dale and Allen models.24,25 If there are more electrons
in a given volume, the dielectric response will become larger, and
indeed, SHAP analysis shows that dielectric constant monotonically
increases with density.

The high contribution of the bandgap is also no surprise from
the Penn model [Eq. (3)]. Lower energy excitations result in a
larger dielectric constant. A large bandgap gives a negative SHAP

FIG. 2. Relation of the value of each features and their SHAP values. Plot is col-
ored red (blue) if the value of the feature is high (low). The vertical width of the plot
shows the number of points within the same SHAP value.
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contribution. Interestingly, the magnitude of positive contributions
from small bandgaps has a longer tail in the distribution than the
negative contribution from large gaps. This suggests that although
a large gap decreases the dielectric response, this effect diminishes
quickly so that continuously increasing bandgap will not always
decrease the dielectric constant.

To take a deeper look at these relationships, further analy-
sis was performed, as shown in Fig. 3(a). The contribution from
the bandgap decreases as the gap increases with an inverse power
law relation. By coloring the individual points according to mate-
rial density, the interplay of density and bandgap can be observed.
Specifically, when the bandgap is low, a low density increases the
SHAP value, while when the gap is high a low density decreases
the magnitude of the negative SHAP value. While it is not possi-
ble to derive rigorous analytical relationship from the number of
data points we have, Fig. 3(a) suggests a ϕEg ∼ n/Em

g relation, where
ϕEg is the SHAP value for the bandgap, n is the material density,
and m is an arbitrary constant. This is similar to the Penn relation
[Eq. (3)]. Therefore, it is possible to interpret that ML is learning the
Penn model while incorporating other feature relations as correction
terms.

When the formation energy is high (low), the dielectric con-
stant is raised (suppressed) (see Fig. 2). This relation is opposite to
that of the bandgap, and the negative correlation −0.65 between the
two also agrees with this trend (Fig. S2). Within our ML model,
two roles of formation energy can be suggested. First, it is act-
ing as an ionicity parameter. According to Pauling, the formation
energy of binary compounds is ΔH ∝ (ΔEPauling)2, where ΔEPauling

is the Pauling energy difference.57 This trend was present in our
dataset (Fig. S7); however, the variance was large, which suggests
contributions from other features. Second, it is another feature
for the bandgap. In main group binary compounds, the relation
ΔH ∝ (E 2

g /Ef ) ln(Eg/Ef ) has been reported.58 Quantitatively, this
relation did not hold for our case (Fig. S7). Given these two rela-
tions and accounting for the fact that formation energy did not
show an obvious relation between the Pauling energy difference
and the bandgap, we suggest that it contains both information
weakly.

The variation of oxidation states also exhibited high importance
(Fig. 2). Since oxidation states contain information about ionicity,
we may expect the variation in oxidation state to lower the value
of the dielectric constant when it is large.22,23 Figure 2 shows the

FIG. 3. SHAP values for (a) bandgap, (b) O2− ratio, (c) F− ratio, and (d) Li+ ratio. The points are colored according to material density.
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opposite trend. This counter intuitive result can be explained by
interpreting this feature as a correction to the flat band approxima-
tion, described earlier for the Penn model. As the bandgap is defined
as a difference between the valence band maximum and the con-
duction band minimum, it does not have information about band
dispersion. If ionic and covalent compounds with the same bandgap
exist, ionic compounds will have smaller effective bandgaps. When
the bandgap is large (small) and contributes to making dielectric
constant smaller (larger), lower variation in oxidation states ampli-
fies (suppresses) this effect (Fig. S8). Theoretical studies also support
the importance of this correction.5

Other oxidation state and Madelung energy features did not
show clear trends, which constitutes further evidence that the varia-
tion of oxidation state is acting as an ionicity parameter. This result
would not have been available if we were only considering feature
importance and highlights the ability of SHAP to access a deeper
understanding of trained models.

Since the distribution of ionic species ratio features had broad
SHAP value distributions and were difficult to interpret in Fig. 2,
we continue their discussion based on Figs. 3(b)–3(d). The SHAP
values of the O2− and F− ratio are plotted against material den-
sity. In general, higher concentration of these ionic species tends
to reduce the dielectric constant. This effect could be interpreted
as originating from the strongly electronegative nature of O and
F, which stabilize valence electrons and suppress their dielectric
response. In contrast, for the Li+ cation, the SHAP value is positive,
meaning that it increases the dielectric constant. Furthermore, we
can see the interplay of density and composition; when the density
is higher, the effect of the O2− and F− ratio was enhanced, where
O2− had a slightly larger change. Due to the limited number of
data points, further study is required to draw firmer conclusions.
Furthermore, it should be noted that the SHAP values for ionic
species cannot be directly related to atomic polarizabilities because
our model is not explicitly based on physical models such as the CM
model.

Finally, we explore the limitations of the trained SVR model
by examining LiBC and CdCN2 in Table III. Since SHAP values are
additive,51 we are able to decompose them to each of the features.
We begin with the dielectric constant predicted for the median of
features (ε = 5.58) and add contribution of all the features sequen-
tially. Although only the ten most important features are presented,
other features had minor contribution ∼0.001, so we will only dis-
cuss features presented in Fig. 4. For LiBC, which had largest error
for both SVR and DNN, SVR predicted 3.54 where our calculated
value was 11.96 (Table III). As shown in Fig. 4(a), the largest con-
tribution was from the material density. Together with the fact that
the material density was small (2.15 g/cm2), the error is likely due to
the incorrect contribution of material density. It is likely that in this
range of material density, sufficient sampling was not achieved with
our training dataset.

Most of the materials with large error feature a large con-
tribution from material density. The exception was CdCN2. SVR
predicted 6.55, where 4.45 was the result of our DFPT calculation
(Table III). As shown in Fig. 4(b), the three largest contributions
are N3− ratio, formation energy, and variation in oxidation state,
which have reasonable values. We instead assign the error as aris-
ing from the large anisotropy, which is not taken into account. The
full dielectric matrix is

FIG. 4. Breakdown of SHAP values for ten most important features shown as a
waterfall plot for (a) LiBC and (b) CdCN2 in Table III. Starting with the dielectric
constant predicted by a median of the features (ε = 5.58), each feature contributes
to lowering or elevating the value of the dielectric constant in an additive manner.
The final value of the dielectric constant εpred is the output of the model.

ε =
⎡⎢⎢⎢⎢⎢⎣

3.40 0.00 0.00
0.00 3.40 0.00
0.00 0.00 6.55

⎤⎥⎥⎥⎥⎥⎦
. (5)

The DNN performed better because the bond lengths are explicitly
taken into account through the graph representation.

V. CONCLUSIONS
We showed that two different machine learning models, a

support vector machine and a deep neural network, were able to
predict the dielectric constants of crystals with reasonable preci-
sion. Comparison with our density functional perturbation theory
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calculations reveals that the machine learning models were able to
detect erroneous results in the original dataset. We performed the
SHAP analysis of the support vector machine model, which illus-
trated that it is learning similar relations to the textbook Clausius–
Mossotti and Penn expressions. Finally, we showed the limitation
of our support vector model through a detailed analysis of the
predictions.

We suggest that as long as the dataset is sufficiently large to
sample the crystal space of interest, machine learning models can
be an effective approach not only to predict material properties but
also to capture physical trends. The analysis approach used in this
study is not restricted to dielectric response and therefore has appli-
cation potential for other relations, including properties that are
not as intensively studied and where there is no existing analytical
description.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional model parame-
ters and analysis (pdf).
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