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ABSTRACT: We present a low-cost, virtual high-throughput
materials design workflow and use it to identify earth-
abundant materials for solar energy applications from the
quaternary oxide chemical space. A statistical model that
predicts bandgap from chemical composition is built using
supervised machine learning. The trained model forms the
first in a hierarchy of screening steps. An ionic substitution
algorithm is used to assign crystal structures, and an oxidation
state probability model is used to discard unlikely chemistries.
We demonstrate the utility of this process for screening over 1
million oxide compositions. We find that, despite the
difficulties inherent to identifying stable multicomponent
inorganic materials, several compounds produced by our
workflow are calculated to be thermodynamically stable or metastable and have desirable optoelectronic properties according to
first-principles calculations. The predicted oxides are Li2MnSiO5, MnAg(SeO3)2, and two polymorphs of MnCdGe2O6, all four
of which are found to have direct electronic bandgaps in the visible range of the solar spectrum.

■ INTRODUCTION

The past decade has seen the construction of extensive
databases for computed materials properties from quantum
mechanical calculations.1−6 These databases have enabled the
virtual screening of thousands of compounds for new target
properties in the fields of photovoltaics,7−9 solar fuels,10−14

thermoelectrics,15−17 and others.18,19 They are also facilitating
the move toward predictive materials design using data-mining
and machine learning (ML). A growing infrastructure of ML
tools has enabled its application to complex problems across
many areas of molecular and materials science.20 This includes
building models that relate readily available descriptors to
desirable properties including bandgap,21−24 thermodynamic
stability,25−27 thermal transport properties,28,29 and the
probability for crystal structure types to form.30,31 These
approaches constitute computationally affordable ways to
explore the vast chemical space that is otherwise intractable
to high-throughput first-principles computation.32

While the development of more advanced statistical
techniques for chemical and materials science continues,33 it
is already possible to add ML models to the list of tools that
can be used in materials design workflows. In this paper, we
present a virtual high-throughput screening process in which
ML joins the ranks of other data-driven models and density
functional theory (DFT) calculations to constitute a hierarchy
of filtering stages. The overall workflow is capable of translating
from a compositional search space of over 1 million quaternary

oxides (AwBxCyOz) to compounds predicted to have target
optoelectronic properties by explicit quantum-mechanics
calculations.
Our workflow consists of five steps. In the first, which deals

with the largest number of configurations, a ML model is used
to screen for compositions predicted to have a bandgap within
a window for potential applications for solar energy
conversion. The next stage of filtering, illustrated in Figure 1,
combines multiple low-cost data-driven approaches to further
reduce the search space. We make use of the Herfidahl
Hirschman index of resource availability (HHIR)

34 to focus on
the most sustainable element compositions. Two established
models are used to assign high-ranking compositions to likely
crystal structures35 and then assess the feasibility of these new
compounds in terms of oxidation states.36 Finally, automated
electronic structure calculations are carried out in order to
accurately predict the thermodynamic stability and bandgap of
candidate materials. We demonstrate the overall process by
screening 1.1 million quaternary oxide compositions to identify
four new compounds with suitable bandgaps for solar energy
applications comprised of earth-abundant elements. These
data-driven approaches are used to drastically reduce the
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required computational resources compared to a brute-force
first-principles investigation.
Step 1: Machine Learning Model of Oxide Bandgaps.

Supervised ML can be used to build statistical models that
relate input values (features) to target values (labels) for a set
of training samples. These models can then be used
predictively given new data. There exists a wide variety of
supervised ML approaches, many of which are being applied to
numerous problems relating to first-principles materials
modeling.20 We now provide a brief outline of the key
concepts and training procedure needed to build a gradient
boosting regression (GBR) model, which is employed in this
work to predict bandgaps from chemical compositions. The
GBR model is trained and subsequently applied using the
scikit-learn Python library.39

Model Structure. In GBR, an ensemble of individual weak
learners (usually decision trees) is used. By weak learners, we
mean that each individual learner has poor predictive power if
applied in isolation. When building decision trees, the goal is to
predict the value of sample labels by learning simple decision
rules from the sample features. Individual trees are constructed
using the classification and regression trees (CART)
algorithm.40 In brief, for a given node of a decision tree
(Figure 2a), the sample space is split into two parts that are as
homogeneous as possible according to their labels. A decision
rule involving one of the sample features is selected to best
achieve this goal, i.e. to minimize the impurity of the node.
This process is carried out recursively until some stopping
criterion is met. For regression, the mean value of the ground

truth labels at a given leaf node is taken as the prediction of the
model for samples at that node.
One problem with decision treesand indeed the reason

that they fall into the category of weak learnersis that, by
splitting the sample space on the basis of one feature at each
node, they fail to include predictive power from multiple,

Figure 1. Computer-aided design workflow. Data from the Computational Materials Repository (CMR) database is used in conjunction with
Matminer37 to construct a gradient boosting regression (GBR) model (step 1), which is then used as a bandgap filter (step 2). Compositions are
ranked using the Herfindahl Hirschman index (HHIR),

34 appropriate structures are generated with a structure substitution algorithm,38 and a
probabilistic oxidation state model filters out unlikely species combinations (step 3). Thermodynamic stability (step 4) and bandgaps (step 5) are
calculated from first-principles using semilocal density functional theory (DFT) and nonlocal hybrid DFT.

Figure 2. Schematic of the gradient boosting regression (GBR)
model. (a) A decision tree splits the sample space recursively at nodes
based on feature values, grouping samples into leaf nodes. (b)
Multiple decision trees are constructed during the GBR process with
each consecutive tree trained on the residuals of the existing model,
minimizing the root-mean-squared error (RMSE).
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overlapping regions of feature space. As such, decision trees of
a small depth tend to ignore valuable information from unused
features, while those of a large depth are likely to be fit to
random noise in the data set. This shortcoming is countered
within GBR by constructing multiple decision trees sequen-
tially. As depicted in Figure 2b, the overall model is built by
adding trees in a forward, stagewise fashion with each
consecutive tree trained not on the sample labels but on the
residuals of the current model. The result is that each
consecutive tree can consider the whole sample space and
serves to improve the overall performance of the model by
minimizing a chosen loss function, in this case the root-mean-
squared error (RMSE).
Data Representation. The target property that we wish to

predict is the bandgap calculated using the GLLB-sc
functional.41 One possible drawback of this choice of
functional is that it is only formulated in the spin unpolarized
case, so it may not perform well for materials containing
magnetic ions. Nonetheless, it has been shown to give more
reliable estimations of bandgap than semilocal DFT functionals
that operate within the generalized-gradient approximation
(GGA) for a range of chemistries.11,13 The bandgap estimates
obtained using this functional are closer to those from
expensive hybrid DFT and GW frameworks than they are to
those from GGA functionals, and at a fraction of the
computational cost. We direct the interested reader to ref 13
for details on the accuracy of this method.
The bandgap values produced by Castelli et al. are used as a

training set13 and are available from the Computational
Materials Repository (CMR) database.3 This set is comprised
of 2289 inorganic materials, 799 of which are oxides (i.e.,
contain oxygen and at least one other element), which are used
as training data. Larger data sets than this that contain oxide
bandgaps do exist but are primarily the result of GGA
calculations. This data set therefore represents an appropriate
compromise between quality of data and quantity of data
points.
The compositions of the materials are represented using the

element properties from the Magpie package.42 The features
used are the minimum, maximum, range, mean, mode, and
mean absolute deviation (MAD) of atomic number,
Mendeleev number, atomic mass, melting temperature, and
electronegativity, among others (see the Supporting Informa-
tion of ref 42 for the full list). This set also includes spacegroup
number, which refers to the spacegroup number of the element
in its 0 K ground state. It should be noted that spacegroups are
given numeric labels in which chemical information may be
embedded given that they are directly related to element
coordination via its crystal structure type. However, features
produced by calculating the mean, range, etc., of these numeric
labels are arguably not as meaningful as for other properties
such as the boiling point and atomic radius, which are more
physically motivated. We include them in this study so as to
make use of the full Magpie feature set and note that a more
full investigation into the effect of different feature sets on this
type of model would constitute interesting further work.
In addition, we use the number of valence electrons, the

elemental frontier orbital energies calculated from neutral
atoms with DFT, and the bandgap center position calculated
using the geometric mean of electronegativities as demon-
strated by Nethercot.43 All of the 149 features are generated
using the Matminer Python library37 and can all be
calculated using knowledge of the elemental composition

along with the element properties present within the same
library.
Finally, it is important to note that predicting the bandgap of

a chemical composition is not a well-defined problem; due to
the fact that various polymorphs can exist for a given
composition, no unique solution can be given in the absence
of structural information. The training data set used contains
ground state polymorphs only, so a model built using this data
will specifically relate chemical composition to the bandgap of
the lowest energy phase. The extent to which polymorphism
limits the ability to predict bandgap from composition is
discussed further in the following section.

Model Training. While the model parameters are set
automatically during the learning process as described above,
several key hyperparameters must be chosen at the start. For
GBR, as well as the self-explanatory tree-specific hyper-
parameters, there are three key boosting parameters (Table
1). The fraction of compounds to fit each tree dictates the

maximum number of samples in the training set that any
individual tree can use, introducing some level of diversity into
the ensemble, which helps to mitigate against overfitting. The
number of decision trees and learning rate refer to the number
of boosting stages used in the final ensemble and the factor by
which the contribution of each new tree is multiplied,
respectively. The overall model is given by

F x h x( ) ( )
m

M

m m
1

∑ γ=
= (1)

where M is the total number of decision trees, hm(x) are the
individual trees, and γm is the learning rate.
The total error in ML approaches comes from a

combination of bias, variance, and irreducible errors. Gradient
boosting reduces the bias of individual trees but runs the risk of
increasing the variance (error from sensitivity to noise in the
training data). Upon changing a given hyperparameter, it is
crucial to check how the model performs on unseen data, even
if the fit to the training data appears to be improving (see
Figure 3). Each time a model is built using a trial set of
hyperparameters, 10-fold cross-validation (CV) is performed
whereby the model is trained on 90% of the data and then
tested on the remaining 10%. This process is repeated such
that every 10% chunk of data is used for testing; then, the
mean RMSE is calculated.
Optimal hyperparameter values for this GBR model were

found by Bayesian optimization and are listed in Table 1. This
was achieved using the scikit-optimize Python
library44 and involves approximating the model using Gaussian
processes. The next set of hyperparameters to trial is chosen by

Table 1. Hyperparameter Values Used in the Final GBR
Model for Oxide Bandgap Prediction

tree-specific parameters

min. compounds needed to split nodes 65
max. depth of tree 20
min. compounds required at leaf nodes 1
max. features considered per tree 86

boosting parameters

fraction of compounds to fit each tree 0.9
learning rate 0.01
number of decision trees 1000
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an acquisition function over the Gaussian prior, which is
cheaper to evaluate than the model itself. A more detailed
explanation of this approach can be found in ref 45. Using
these parameters, as well as removing oxide gases such as CO2
and SO2 and complex anions containing uncommon oxidation
states such as phosphites and perphosphates, yields a final
model with an RMSE of 0.95 eV. We note that the scope of the
model will be limited by excluding these compounds
containing uncommon oxidation states, to ensure that they
are also excluded from the search space when the model is
used predictively.
Finally, it might be assumed that the correlation between

bandgap calculated using GGA exchange-correlation func-
tionals, which tend to be consistently underestimated, and that
calculated using GLLB-sc could be high enough to use
predictively. If this were the case, a ML model could be trained
using a larger database, such as the Materials Project (MP),
which contains ∼86,000 inorganic structures with bandgaps
calculated using the PBE functional.46 We find that, while the
expected linear relationship is observed between bandgaps
calculated using PBE and GLLB-sc, there is significant
deviation from the relationship and that this is larger in
general for oxides (see Figure S1 in the Supporting
Information). The standard deviation is 0.85 eV; thus, for a
two-step approach to be advantageous, the RMSE of the model
trained on the large data set of PBE bandgaps would have to be
unreasonably low (<0.1 eV).
Model Performance and Limitations. Features represent-

ing the crystal structures of inorganic compounds to ML
algorithms are the subject of much recent development.47−50

The use of such features has been shown to improve the
predicted properties of inorganic solids beyond compositional
representations alone. As such, the accuracy of our model is
limited because atomic connectivity is not accounted for. This
effect is particularly prevalent for oxides, as their structural
diversity results in a wide variety of local bonding arrange-
ments. We have quantified this phenomenon by showing that
the unscreened Madelung site potential of the oxide aniona

quantity that reflects the electrostatic potential of an ion in a
crystal by approximating ions as point chargesvaries across
all binary metal oxides with a striking range of 16 V.51

As discussed previously, the training data contains ground-
state polymorphs only, which means that a perfect model
would have a RMSE of 0 eV, predicting the bandgap of the
ground state polymorph perfectly. However, for the more
general practical case of mapping composition to bandgap,
polymorphism will provide an inherent limit to the RMSE that
can be achieved. The distribution of the maximum (PBE)
bandgap difference between polymorphs for all oxide
compositions in the MP database is shown in Figure 4.

While for a large number of oxides, polymorphism results in a
bandgap difference of <0.5 eV, the difference can be as large as
4.18 eV (e.g., LiFePO4) and the mean difference is 0.57 eV.
While it is not possible to translate this result directly to an
optimal RMSE value of a model trained using the GLLB-sc
functional, this analysis highlights the extent to which crystal
structure plays a role in dictating bandgap. A model that
considers chemical composition alone can only be used as a
prescreening filter, and in this context, a composition-only
model with an RMSE of 0.95 eV is reasonable.
The model is also limited by the number of available training

samples. The data set used constitutes a compromise between
quality of data (the GLLB-sc DFT functional is used as
opposed to a GGA functional) and quantity of data points, so
it is likely that a lower RMSE could be achieved if more
training samples were available (see Figure S2). We note also
that inclusion of the nonoxide compounds from the CMR data
set did not improve the predictive power of the model for
oxide bandgaps. There are a number of emerging approaches
that could be examined in the future to be used to negate the
data quality/quantity compromise. Several recent studies have
demonstrated the application of multifidelity data sets, for
example, combining theoretical and experimental data or
theoretical data from several levels of theory. Gaussian
processes have been applied to fuse data sets for prediction

Figure 3. Effect of the number of decision trees (boosting stages) on
model performance for bandgap prediction. At a certain threshold
(∼250), increasing the number of trees in the model ceases to
improve its performance on unseen test data, even though it appears
to better fit the training data.

Figure 4. Distribution of the maximum bandgap difference between
polymorphs for oxides in the Materials Project database that exhibit
polymorphism. Only compounds with an energy above the convex
hull of <0.1 eV and a maximum bandgap difference of >0.05 eV are
included. Bandgaps are calculated in the Materials Project using the
GGA-PBE functional.
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of absorption energies,52 and “combined quantum machine
learning” was shown to be able to incorporate a hierarchy of
theoretical models for enhanced predictive power on atom-
ization energies.53 In the field of neural networks, transfer
learning has proved exceptionally popular and successful.
Active transfer learning was recently applied to fuse DFT and a
small set of CCSDT data to obtain a potential model with
accuracy approaching the CCSDT level on a test set.54

It is also instructive to compare this approach to existing
heuristic methods. For example, the solid state energy (SSE)
scale,55,56 derived from the relationship between electron
affinity (EA) and ionization potential (IP) and bandgap for a
selection of binary closed-shell inorganic semiconductors and
insulators, can be used to estimate bandgaps for new
compounds.57 The SSE has knowledge only of the EA and
IP values of the constituent cations and anions, respectively.
The range and standard deviation of IP values for the 56 binary
oxides used in the construction of the SSE model are 4.9 and
1.44 eV, respectively, giving O the largest associated
uncertainty of all of the anions featured. For this reason,
there is no correlation between the bandgap predicted using
the SSE scale and the GLLB-sc bandgap of the 799 oxides in
the training data set (see Figure S3). By taking into account
more information about the constituent elements, the GBR
model we developed is able to predict bandgaps to a higher
level of accuracy.
We emphasize that this ML model constitutes the first

computationally cheap step in a hierarchy of screening steps, in
which we specifically target properties in a structure-agnostic
fashion in the first instance. As such, the RMSE of 0.95 eV
obtained, the improvement upon existing models such as the
SSE scale, and the improvement upon randomly selecting
oxides (shown in Figure 6 in the next section) makes it a
suitable approach for this purpose.
Finally, we can inspect which features are most important in

the final GBR model using the mean decrease impurity method
(or gini importance).40 Figure 5 shows the mean absolute
deviation (MAD) of covalent radius is the most important

feature. The mean value for volume per atom and MAD of
melting temperature are also relatively important. The extent
to which this can be interpreted as meaningful depends on how
highly correlated the features are. For example, covalent radius
and volume per atom are strongly correlated, which makes it
harder to decouple their contributions to the overall model. In
general, a number of features contribute significantly to the
final model. Investigation into the effect of systematically
removing correlated features, and retraining the model, is an
avenue for further study and a means of extracting physically
intuitive relationships.

Step 2: Bandgap Filter. We now use the trained GBR
model to search for promising candidates from a large search
space. A pool of 1.1 million hypothetical quaternary oxide
compositions was generated using the SMACT Python library,
implementing the heuristic chemical rules employed in that
code.32 The target bandgap range of 1.0−2.5 eV will capture a
wide range of photoactive materials. Smaller gaps may be more
suitable for single-junction photovoltaic applications, while
wider gaps could be used in tandem systems or solar fuel
processes.59,60

To test the efficacy of our model we perform a baseline
comparison against a random sampling of materials from the
data set. The distribution of errors obtained using the GBR
model is shown in Figure 6a. Materials predicted to have a
bandgap at the center of the target range (1.75 eV) have a 60%
probability of having a GLLB-sc bandgap within the range. In

Figure 5. Relative importance of the 20 most important features in
the final gradient boosting regression model. HOMO and LUMO
energies refer to highest occupied and lowest unoccupied molecular
orbital energies as calculated within DFT, respectively (taken directly
from the Matminer Python library). Ionic character refers to
Pauling’s empirical ionic character between pairs of atoms calculated
using electronegativities.58

Figure 6. (a) Distribution of error in predicted bandgap by the
trained GBR model. The shaded region corresponds to an error of
±0.75 eV and encloses 60% of all predictions. (b) Distribution of
GLLB-sc bandgaps for oxides in the CMR training data set. The
shaded region corresponds to a bandgap of 1.75 ± 0.75 eV.
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contrast, Figure 6b shows the distribution of bandgaps of all
oxides in the CMR data set and the probability of choosing
one at random with a bandgap in the target range is just 8%.
We filter the 1.1 million candidates that do not have a

predicted bandgap of 1.75 ± 0.02 eV. A narrow window is
chosen because we do not aim to capture all of the
hypothetical compositions that fall within the target bandgap
range. Rather, those compositions that are most likely to have
bandgaps within the range according to the GBR model are
targeted. If we assume the errors in Figure 6a follow a normal
distribution, then the materials with predicted bandgaps in this
window have a 60% probability of having a GLLB-sc bandgap
within the target range, as already stated. As we widen the
window, this probability decreases. For example, for materials
with predicted bandgaps of 1.35 and 2.15 eV, the probability is
reduced to 55%, and for 1.0 and 2.5 eV, it is 45%. While this is
not a very large reduction in probability, we choose to
minimize false positive results as opposed to minimizing false
negative results. In the language of classification models, we
prioritize precision over recall. This decision is in keeping with
the need to drastically reduce the search space so that a
manageable number of compositions are taken forward to
subsequent screening stages and leads to a greater than 60-fold
reduction of the search space, leaving 17,833 candidates.
Step 3: Crystal Structure Assignment. The surviving

17,833 compositions are ranked by sustainability using the
HHIR scale.34 Starting with the most sustainable composition,
chemically plausible quaternary oxide crystal structures are
constructed using the structure substitution algorithm
developed by Hautier and co-workers.38 This algorithm uses
a statistical model and relies on a database of known
compounds including oxidation state information: A combi-
nation of species (elements in a given oxidation state) of
interest is substituted onto lattice sites in known structures
from the data set of known materials. Each species substitution
is associated with a certain probability, which comes from a
statistical model trained on the compounds that already exist in
the Inorganic Crystal Structure Database (ICSD). If the overall
probability for a given set of substitutions is above a certain
threshold, it is added to a list of possible structures. We use a
threshold of 1 × 10−5 as recommended in the original paper.38

For each predicted structure, a second probabilistic model57

is applied as an additional filter, to check that the combination
of species in structure is chemically plausible. This model
ascribes probabilities to the formation of hypothetical
compounds given the oxidation states of the constituent
species and was trained on a set of 16,700 ordered, inorganic
compounds. The probabilities are derived from the observed
frequency of occurrence of cation−anion pairs, and only the
most electronegative anion is considered in each compound. A
low probability threshold of 0.005 is used. As per the results in
the original paper,57 this has the effect of eliminating only very
unlikely species combinations, i.e., those that appear less than
once or twice in the training data. We also choose to eliminate
Ti3+ compounds due to the d1 electronic configuration being
linked to fast electron−hole recombination for solar
applications.
The above procedure was repeated until 235 candidate

materials were generated, corresponding to 61 unique chemical
compositions. This pool is small enough to allow for explicit
first-principles calculations, and we take these candidate
materials forward to calculate their thermodynamic stability.
All of these crystal structures are available in the Supporting

Information data repository in the form of Pymatgen
Structure objects saved in a json file.

Step 4: Thermodynamic Stability. Competing phases
are identified using the chemical potentials from the MP
database. Then, full geometry optimization is carried out on
candidate compounds and all competing phases using DFT at
the GGA (PBEsol) level, with an equivalent computational
setup. This is done in high-throughput using the Atomate61

and Fireworks62 Python libraries. The DFT total energies
are used to determine thermodynamic stability via the distance
from the 3D convex hull of the quaternary phase diagram.
The significance of thermodynamic (meta)stability has come

to the forefront of materials discovery research recently, with
various studies using existing materials databases to assess the
limits of metastability and its relationship to the likelihood of
compounds to be realized experimentally.63,64 For example,
Sun et al.63 estimate that around half of all compounds in the
ICSD do not lie on the convex hull and are therefore
thermodynamically metastable. Interestingly, they show that
there is a large distribution of unobserved, low-energy
hypothetical polymorphs within the energy spectrum of
observed polymorphs. This means that metastability alone is
not a sufficient criterion to predict whether a compound can be
synthesized. Crucially, they also find that there is an
approximately exponentially decreasing probability distribution
of metastability versus frequency of known compounds, so
defining some upper limit of metastability can be useful in
screening workflows.
We use a metastability window of 100 meV/atom above the

convex hull. This window covers 90% of compounds in the
Materials Project database that represent fully characterized
structures in the ICSD and is consistent with the findings of
Sun et al.63 This limit has been used previously in the
discovery of ternary halides,36 chalcohalides,57 and transparent
conductors of various chemistries.65

Of the 235 compounds, 27 are calculated to be within the
predefined metastability window of the convex hull. Four of
the 27 compounds were found to be structurally identical to
one other compound in the set, leaving 23 unique compounds,
corresponding to 8 distinct compositions. The presence of
identical structures can occur when different parent structures
are found for one composition using the structure substitution
algorithm, which then ultimately yield the same crystal
structure following geometry optimization.
The relatively small proportion of stable and metastable

compounds is unsurprising given the existence of a large
number of stable binary and ternary oxides that act as
competing phases. The energies above the convex hull for all
23 compounds are given in Table S1. Only one compound,
Li2MnSiO5, has been previously reported in the MP database
but has not been synthesized experimentally to the authors’
knowledge. Shown in Figure 7a, the compound ZrMnSi2O7 is
the only one predicted to be thermodynamically stable, while a
second polymorph of ZrMnSi2O7 along with a Li2TiMnO4
structure are predicted to be <10 meV/atom above the convex
hull, as shown in Figure 7b and c, respectively.
While three polymorphs of Li2TiMnO4 are in the MP

database, including one that has been investigated as a possible
active material for Li-ion battery applications,66 none of the
crystal structures adopted by the candidate compounds have
previously been reported. The new phase of Li2TiMnO4 differs
from the three previously reported polymorphs, as the metals
are in tetrahedral environments as opposed to octahedral. It
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also has a wide electronic bandgap of 4.21 eV, as calculated
using a hybrid DFT functional in the following section,
whereas the previously reported compounds all have PBE-
calculated bandgaps of less than 0.4 eV. To the best of our
knowledge, no compounds have previously been reported for
any of the other seven compositions.
Step 5: Electronic Structure. The electronic structures of

the 23 remaining candidate compounds were calculated with
the HSE06 hybrid functional.67,68 While being more computa-
tionally demanding, this approach yields more accurate
electronic structure information than what is available in
current materials databases. The majority of compounds have a
calculated bandgap of >4 eV, which is well outside the target
bandgap window (see Table S1). The bandgaps of the 23
candidates are distributed closer to the bandgap range of
interest (1−2.5 eV) than the oxides in the training data given
in Figure 6, with a range of 1.76−5.12 eV vs 0−12 eV, which is
promising. Four of the compounds are calculated to have
bandgaps within the target window and are listed in Table 2.

The most thermodynamically stable compound with a bandgap
within the target range is MnAg(SeO3)2 and is shown in Figure
8.

Encouragingly, the four compounds with bandgaps in the
target range include three different compositions. Since the
original GBR model is trained on composition alone, this
indicates a coarse 37.5% success rate, based on the fact that
only eight distinct compositions were represented by the final
23 candidate compounds. While the success rate is not as high
as the original 60%, as indicated by the 10-fold CV results, the
latter should be considered a maximum achievable success rate
when using this model predictively. Cross-validation can give
some indication of model performance, but there are limited
options to glean further insight before applying the model
predictively where existing data is scarce.
Crucially, this study represents a small sample size, making it

impossible to draw strong conclusions. Qualitatively, it is
promising that we have identified four candidate compounds
using only 235 first-principles calculations, given the “needle in
a haystack” nature of the problem. Without using the data-
driven screening stages, computationally prohibitive structure
optimization calculations would have been required for each of
the top compositions suggested by the ML model. The overall
virtual high-throughput screening process constitutes a multi-
objective optimization, in which bandgap, sustainability, and
stability are all targeted sequentially (see Figure 1). The latter
of these, stability, is likely to be a significant bottleneck for any
screening of quaternary materials as compared with binary or
ternary phases, given the expected lower stability window due
to an increase in possible decomposition pathways.
Finally, the model was trained on bandgaps calculated using

the GLLB-sc functional, whereas the bandgaps of the new
compounds are calculated using the HSE06 functional. In the
original work by Castelli et al. in which they calculate the
bandgaps used here for training data, they show that bandgaps

Figure 7. Three most stable compounds identified by the workflow.
(a and b) Different polymorphs of ZrMnSi2O7 in which Si, Zr, and
Mn atoms are depicted as blue, green, and purple circles, respectively.
(c) A Li2TiMnO4 structure in which Li, Ti, and Mn atoms are
depicted as green, blue, and purple circles, respectively. O atoms are
red circles in all three structures.

Table 2. Summary of Compounds Found to Have
(Predicted HSE06/DFT) Bandgaps That Fall within the
Target Window of 1.0−2.5 eV

formula space group Ehull (meV/atom) bandgap (eV)

Li2MnSiO5 P4/nmm 86 2.24
MnCdGe2O6 P21/c 99 2.47
MnCdGe2O6 C2/c 99 1.76
MnAg(SeO3)2 Pna21 36 2.31

Figure 8. The most stable compound identified by the high-
throughput workflow with a bandgap within the target window,
MnAg(SeO3)2. Mn, Ag, Se, and O atoms are depicted as purple, silver,
green, and red circles, respectively.

Chemistry of Materials Article

DOI: 10.1021/acs.chemmater.9b01519
Chem. Mater. 2019, 31, 7221−7230

7227

http://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.9b01519/suppl_file/cm9b01519_si_001.pdf
http://dx.doi.org/10.1021/acs.chemmater.9b01519


calculated using HSE06 and GLLB-sc are generally in good
agreement.13 However, they also show that, for smaller
bandgaps such as those considered here, the GLLB-sc
functional has a tendency to be underestimated as compared
with the HSE06 functional. This could be another reason for
getting a lower success rate and would also explain why no
compounds had bandgaps calculated using HSE06 smaller than
the target window (<1.0 eV). The availability of a
comprehensive database with electronic and thermodynamic
properties of materials at a consistent high level of theory
would greatly benefit the training of ML models and future
data-driven studies.

■ CONCLUSION
We outlined a multistage computational procedure to reduce a
chemical space of over 1 million compositions to four target
compounds using a combination of techniques and chemical
filters. The majority of the study has been performed on a
single-processor workstation. A GBR model was trained to
predict bandgaps for quaternary oxide compositions. This
model is shown to outperform established chemical heuristics
for the ability to predict bandgap and allows for a 60-fold
reduction of the initial search space, with an order of
magnitude better chance of identifying suitable compounds
compared to random filtering. Additional screening based on
sustainability, oxidation state combinations, and thermody-
namic stability was used, before performing high-quality
electronic structure calculations on a pool of 23 candidate
materials. Finally, we identified four new quaternary oxides not
previously reported or explored for solar energy applications.
The workflow that we present here can be a blueprint for using
a combination of machine learning and first-principles
calculations to allow efficient, targeted screening of the vast
chemical structure−composition hyperspace.

■ COMPUTATIONAL METHODS
Full information on the workflow is available in the Supporting
Information. It makes use of the Python libraries SMACT,32

Pymatgen,69 Matminer,37 Scikit-learn,39 Atomate,61

and Fireworks.62

Electronic Structure Caluclations. First-principles calculations
are carried out using Kohn−Sham DFT with a projector-augmented
plane wave basis70 as implemented in the Vienna Ab-initio Simulation
Package (VASP).71,72 We use the PBEsol exchange-correlation
functional,73 and a k-point grid is generated for each calculation
with a density of 120 Å3 in the reciprocal lattice. The kinetic-energy
cutoff is set at 600 eV, and the forces on each atom are minimized to
below 0.005 eVÅ−1.
Semilocal exchange-correlation treatments such as the PBEsol

functional provide an accurate description of crystal structures but
tend to underestimate the electronic bandgaps of semiconductors. To
overcome this issue, more accurate electronic structure calculations
are performed using the hybrid nonlocal functional HSE06,68 which
includes 25% screened Hartree−Fock exact exchange. Γ-Centered
homogeneous k-point grids are used with a density of 64 Å3 in the
reciprocal lattice, and the kinetic energy cutoff is set at 520 eV.
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(47) Schütt, K. T.; Glawe, H.; Brockherde, F.; Sanna, A.; Müller, K.
R.; Gross, E. K. U. How to represent crystal structures for machine
learning: Towards fast prediction of electronic properties. Phys. Rev.
B: Condens. Matter Mater. Phys. 2014, 89, 205118.
(48) Ward, L.; Liu, R.; Krishna, A.; Hegde, V. I.; Agrawal, A.;
Choudhary, A.; Wolverton, C. Including crystal structure attributes in
machine learning models of formation energies via Voronoi
tessellations. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 96,
024104.
(49) Isayev, O.; Oses, C.; Toher, C.; Gossett, E.; Curtarolo, S.;
Tropsha, A. Universal Fragment Descriptors for Predicting Electronic
Properties of Inorganic Crystals. Nat. Commun. 2017, 8, 15679.

Chemistry of Materials Article

DOI: 10.1021/acs.chemmater.9b01519
Chem. Mater. 2019, 31, 7221−7230

7229

https://arxiv.org/abs/1708.04766
https://scikit-optimize.github.io/
http://dx.doi.org/10.1021/acs.chemmater.9b01519


(50) Jain, A.; Bligaard, T. Atomic-position independent descriptor
for machine learning of material properties. Phys. Rev. B: Condens.
Matter Mater. Phys. 2018, 98, 214112.
(51) Walsh, A.; Butler, K. T. Prediction of electron energies in metal
oxides. Acc. Chem. Res. 2014, 47, 364−372.
(52) Tian, H.; Rangarajan, S. On Deriving Probabilistic Models for
Adsorption Energy on Transition Metals using Multi-level Ab initio
and Experimental Data. 2019, arXiv:1901.09253. arXiv.org e-Print
archive. http://arxiv.org/abs/1901.09253 (accessed August 1, 2019).
(53) Hansen, K.; Montavon, G.; Biegler, F.; Fazli, S.; Rupp, M.;
Scheffler, M.; von Lilienfeld, O. A.; Tkatchenko, A.; Müller, K.-R.
Assessment and Validation of Machine Learning Methods for
Predicting Molecular Atomization Energies. J. Chem. Theory Comput.
2013, 9, 3404−3419.
(54) Smith, J. S.; Nebgen, B. T.; Zubatyuk, R.; Lubbers, N.;
Devereux, C.; Barros, K.; Tretiak, S.; Isayev, O.; Roitberg, A. E.
Approaching coupled cluster accuracy with a general-purpose neural
network potential through transfer learning. Nat. Commun. 2019, 10,
2903.
(55) Pelatt, B. D.; Ravichandran, R.; Wager, J. F.; Keszler, D. a.
Atomic solid state energy scale. J. Am. Chem. Soc. 2011, 133, 16852−
16860.
(56) Pelatt, B. D.; Kokenyesi, R. S.; Ravichandran, R.; Pereira, C. B.;
Wager, J. F.; Keszler, D. A. Atomic solid state energy scale:
Universality and periodic trends in oxidation state. J. Solid State
Chem. 2015, 231, 138−144.
(57) Davies, D. W.; Butler, K. T.; Skelton, J. M.; Xie, C.; Oganov, A.
R.; Walsh, A. Computer-aided design of metal chalcohalide
semiconductors: from chemical composition to crystal structure.
Chemical Science 2018, 9, 1022−1030.
(58) Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell
University Press: Ithaca, NY, 1960.
(59) Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. Photo-
electrochemical hydrogen generation from water using solar energy.
Materials-related aspects. Int. J. Hydrogen Energy 2002, 27, 991−1022.
(60) Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; Forman, A. J.; Chen, Z.;
Deutsch, T. G.; James, B. D.; Baum, K. N.; Baum, G. N.; Ardo, S.;
Wang, H.; Miller, E.; Jaramillo, T. F.; Turner, J. A.; Dinh, H. N.
Technical and economic feasibility of centralized facilities for solar
hydrogen production via photocatalysis and photoelectrochemistry.
Energy Environ. Sci. 2013, 6, 1983−2002.
(61) Mathew, K.; et al. Atomate: A high-level interface to generate,
execute, and analyze computational materials science workflows.
Comput. Mater. Sci. 2017, 139, 140−152.
(62) Jain, A.; Ong, S. P.; Chen, W.; Medasani, B.; Qu, X.; Kocher,
M.; Brafman, M.; Petretto, G.; Rignanese, G. M.; Hautier, G.; Gunter,
D.; Persson, K. A. FireWorks: A dynamic workflow system designed
for high-throughput applications. Concurrency Computation 2015, 27,
5037−5059.
(63) Sun, W.; Dacek, S. T.; Ong, S. P.; Hautier, G.; Jain, A.;
Richards, W. D.; Gamst, A. C.; Persson, K. A.; Ceder, G. The
thermodynamic scale of inorganic crystalline metastability. Science
Advances 2016, 2, No. e1600225.
(64) Aykol, M.; Dwaraknath, S. S.; Sun, W.; Persson, K. A.
Thermodynamic limit for synthesis of metastable inorganic materials.
Science Advances 2018, 4, No. eaaq0148.
(65) Woods-Robinson, R.; Broberg, D.; Faghaninia, A.; Jain, A.;
Dwaraknath, S. S.; Persson, K. A. Assessing High-Throughput
Descriptors for Prediction of Transparent Conductors. Chem. Mater.
2018, 30, 8375−8389.
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